Doubly Stochastic CDO Term Structures∗
نویسندگان
چکیده
This paper provides a general framework for doubly stochastic term structure models for portfolio of credits, such as collateralized debt obligations (CDOs). We introduce the defaultable (T, x)-bonds, which pay one if the aggregated loss process in the underlying pool of the CDO has not exceeded x at maturity T , and zero else. Necessary and sufficient conditions on the stochastic term structure movements for the absence of arbitrage are given. Moreover, we show that any exogenous specification of the forward rates and spreads volatility curve actually yields a consistent loss process and thus an arbitrage-free family of (T, x)-bond prices. For the sake of analytical and computational efficiency we then develop a tractable class of affine term structure models.
منابع مشابه
Some results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملOptimal Bespoke CDO Design via NSGA-II
This research work investigates the theoretical foundations and computational aspects of constructing optimal bespoke CDO structures. Due to the evolutionary nature of the CDO design process, stochastic search methods that mimic the metaphor of natural biological evolution are applied. For efficient searching the optimal solution, the nondominating sort genetic algorithm NSGA-II is used, which ...
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملRAPPORT Primes in the doubly stochastic circulants
The algebraic structure of the set of doubly stochastic circulants is that of a semi-ring. The concept of a prime in the doubly stochastic circulants is introduced in this paper and examples are given. The classiication of a prime in the doubly stochastic circulants is equivalent to the solvability of a linear equation over a doubly stochastic circulant. A representation of doubly stochastic ci...
متن کامل